Polarization of nuclear spins by a cold nanoscale resonator
نویسندگان
چکیده
A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the lowtemperature limit where spin-lattice interactions are “frozen out,” spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes “trapped” away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy eigenstates, spontaneous emission from eigenstate populations into the resonant mode can be interpreted as independent emission by individual spins, and the spins relax exponentially to thermal equilibrium if the development of resonator-induced correlations is suppressed. When the spin Hamiltonian includes a significant contribution from the homonuclear dipolar coupling, the energy eigenstates entail a correlation specific to the coupling network. Simulations of dipole-dipole coupled systems of up to five spins suggest that these systems contain weakly emitting eigenstates that can trap a fraction of the population for time periods 100/R0, whereR0 is the rate constant for resonator-enhanced spontaneous emission by a single spin 1/2. Much of the polarization, however, relaxes with rates comparable to R0. A distribution of characteristic high-field chemical shifts tends to increase the relaxation rates of weakly emitting states, enabling transitions to states that can quickly relax to thermal equilibrium. The theoretical framework presented in this paper is illustrated with discussions of spin polarization in the contexts of force-detected nuclear-magnetic-resonance spectroscopy and magnetic-resonance force microscopy.
منابع مشابه
Nanoscale torsional resonator for polarization and spectroscopy of nuclear spins.
We propose a torsional resonator that couples to the transverse spin dipole of an attached sample. The absence of relative motion eliminates a source of friction that would otherwise hinder nanoscale implementation. Enhanced spontaneous emission induced by the resonator relaxes the longitudinal spin dipole at a rate of ∼1 s⁻¹ in the low-temperature limit. With signal averaging, single-proton m...
متن کامل2 00 1 Enhancement of Nuclear Spin Superradiance by Electron Resonator 1
Superradiance of nuclear spins is considered, when the nuclei interact via hyperfine forces with electrons of a ferromagnet. The consideration is based on a microscopic model. If the sample, coupled with a resonant electric circuit, possesses electronic magnetization, then the electron subsystem plays the role of an additional effective resonator, by enhancing the coupling between nuclear spins...
متن کاملNuclear spin relaxation induced by a mechanical resonator.
We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magnetomechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (...
متن کاملSensitivity of force-detected NMR spectroscopy with resonator-induced polarization
In the low-temperature regime where the thermal polarization P is of order unity and spin-lattice relaxation is “frozen out,” resonator-induced relaxation can be used to polarize a nuclear-spin sample for optimal detection sensitivity. We characterize the potential of resonator-induced polarization for enhancing the sensitivity of nuclear-magnetic-resonance spectroscopy. The sensitivities of tw...
متن کاملRole of spin noise in the detection of nanoscale ensembles of nuclear spins.
When probing nuclear spins in materials on the nanometer scale, random fluctuations of the spin polarization will exceed the mean Boltzmann polarization for sample volumes below about (100 nm){3}. In this Letter, we use magnetic resonance force microscopy to observe nuclear spin fluctuations in real time. We show how reproducible measurements of the polarization variance can be obtained by cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011